组成桁架的杆件的轴线和所受外力都在同一平面上(图1)。平面桁架可视为在一个基本的三角形框上添加杆件构成的。每添加两个杆,须形成一个新节点才能使结构的几何形状保持不变。这种能保持几何坚固性的桁架叫作无余杆(或叫无冗杆)桁架。如果只添加杆件而不增加节点,就不能保持桁架的几何坚固性,这种桁架叫作有余杆(或叫有冗杆)桁架。
空间桁架的节点为光滑球铰结点,杆件轴线都通过联结点的球铰中心并可绕球铰中心的任意轴线转动。每个节点在空间有三个自由度。节点和杆件数的关系为W=3j-n,W>0为几何可变桁架,W=0为几何不变且无多余约束的空间桁架。空间桁架和平面桁架一样,可用部分截割法和节点法求出桁架内所有杆件所受的内力。部分截割法则是利用空间任意力系的六个平衡条件求出各杆的内力。节点法是截取节点为隔离体,利用每个节点所受的空间汇交力系的三个平衡条件,求出各杆的内力。 [2]
足够强度—不发生断裂或塑性变形;足够刚性—不发生过大的弹性变形;足够稳定性—不发生因平衡形式的突然转变而导致坍塌;良好的动力学特性—抗震、抗风性。
桁架的设计要求: 要有符合要求的杆件;要有良好的连接件,包括铆钉、销钉及焊缝的连接。这些就涉及到桁架的类型、杆件的尺寸和材料,但首先是静力学分析。
根据桁架杆件所用的材料和计算所得出的内力,选择合适的截面应能保证桁架的整体刚度和稳定性以及各杆件的强度和局部稳定,以满足使用要求。
桁架的整体刚度以控制桁架的竖向挠度不超过容许挠度来保证;平面桁架的平面外刚度较差,必须依靠支撑体系保证。支撑系统有上弦支撑、下弦支撑、垂直支撑和桁架共同组成空间稳定体系。