变频技术诞生背景是交流电机无级调速的广泛需求。传统的直流调速技术因体积大故障率高而应用受限。
20世纪60年代以后,电力电子器件普遍应用了晶闸管及其升级产品。但其调速性能远远无法满足需要。1968年以丹佛斯为代表的高技术企业开始批量化生产变频器,开启了变频器工业化的新时代。
20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速的研究得到突破,20世纪80年代以后微处理器技术的完善使得各种优化算法得以容易的实现。
20世纪80年代中后期,美、日、德、英等发达国家的 VVVF变频器技术实用化,商品投入市场,得到了广泛应用。 早的变频器可能是日本人买了英国专利研制的。不过美国和德国凭借电子元件生产和电子技术的优势,高端产品迅速抢占市场。
变频器节能主要表现在风机、水泵的应用上。风机、泵类负载采用变频调速后,节电率为20%~60%,这是因为风机、泵类负载的实际消耗功率基本与转速的三次方成比例。当用户需要的平均流量较小时,风机、泵类采用变频调速使其转速降低,节能效果非常明显。而传统的风机、泵类采用挡板和阀门进行流量调节,电动机转速基本不变,耗电功率变化不大。据统计,风机、泵类电动机用电量占全国用电量的31%,占工业用电量的50%。在此类负载上使用变频调速装置具有非常重要的意义。目前,应用较成功的有恒压供水、各类风机、中央空调和液压泵的变频调速。
电机硬启动不仅会对电网造成严重的冲击,而且会对电网容量要求过高,启动时产生的大电流和震动对挡板和阀门的损害极大,对设备、管路的使用寿命极为不利。而使用变频器后,变频器的软启动功能将使启动电流从零开始变化,值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备和阀门的使用寿命,同时也节省设备的维护费用。
矢量控制(VC)方式
矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。